

Fault Tolerance Analysis of the FlexRay Startup Procedure Using Model Checking

Sven Bünte <sven@vmars.tuwien.ac.at>

Motivation

X-by-Wire Systems

FlexRay: Overview

- Communication Protocol
 - Time and event triggered
 - Deterministic
 - Fault tolerant
- Application in the automotive domain
- Data rate of 10 Mbit/s
- Intended to support x-by-wire technology

FlexRay: Medium Arbitration

- Follows the *Time Division Multiple Access* (*TDMA*) principle
- Includes ideas from the ByteFlight protocol

11/28/2008 Echtzeit 2008

FlexRay: Medium Arbitration

- Follows the *Time Division Multiple Access* (*TDMA*) principle
- Includes ideas from the ByteFlight protocol
- Initialization of TDMA schedule complex
 - Really deterministic?
 - Really fault-tolerant?

The Wakeup Procedure

- Cluster nodes can enter a sleep state to safe energy
- Wakeup transforms all nodes to a ready state

The Wakeup Procedure

- Cluster nodes can enter a sleep state to safe energy
- Wakeup transforms all nodes to a ready state
 - Essential for TDMA initialization to start
 - Does the procedure always terminate in a bounded time interval?

The Startup Procedure

- Initializes synchronized communication w.r.t.
 TDMA schedule
- Master clock principle not fault tolerant
 - → Set of master clock nodes: *Coldstarters*

Specification and Description Language (SDL)

- FlexRay specified via SDL
- SDL originally intended for telephony applications (hardware)
- To describe the behavior of communicating processes
- FSM approach
- Includes real-time characteristics
- Discrete and bounded

Specification and Description Language (SDL)

Example from FlexRay specification:

From SDL to DT-PROMELA/DT-SPIN

- DT-PROMELA, Discrete Time PROcess MEta LAnguage
 - Input language for model checker DT-SPIN
 - based on C and CSP
 - Intended to model communicating concurrent processes
 - Models are strictly discrete and bounded
 - Able to model discrete time
 - Automatic translation from SDL to DT-Promela (sdl2if and if2pl)
- Translations were done by hand though:
 - Only graphical SDL specification of FlexRay available
 - Further optimizations and abstractions are essential

Model *Architecture:*

- Fault-free scenario: Model checking results
 - WUP is always transmitted after two cycles
 - Host is notified correctly about transmission
 - Prerequisite: WUP has to consist of at least 3 wakeup symbols
 - Verification takes half a second

- Fail-silent/resetting scenario
 - System wakeup always successful in the fail-silent scenario if host configured properly

A resetting node can cause a non-terminating wakeup

- CAS-Babbler
 - Violation of timeliness properties:
 - Error cycle from the "resetting scenario" can be reconstructed with a CAS instead of a WUP
 - A very high babbling frequency occupies the physical medium totally

- Host Interaction
 - FlexRay offers an optional interface between the host application and the bus driver:

- Nodes turn themselves off if no progress is detected and enter with an individual offset
- Assumes that the Controller Host Interface provides correct information to the host application
- Timeliness verified by SPIN
- Increases fault-tolerance!

Central Bus Guardian (CBG)

 FlexRay tolerates a CAS-babbler if host and CBG are configured properly (not specified)

Experimental Results: Startup

Architecture similar to wakeup (only one more ECU)

Optimizations and abstractions needed

Experimental Results: Startup

Fault-free scenario

Coldstarter	s Non-coldstarters	Channels	WCET	Memory	Time	
2	1	A	15 cycles	3.989MB	$0 \mathrm{m} 3 \mathrm{s}$	
3	0	A	15 cycles	7.193MB	$0 \mathrm{m} 8 \mathrm{s}$	
2	1	A & B	15 cycles	1079.538MB	84 m 2 s	
3	0	A & B	-	1782.544MB	149 m 45 s	
'	•	'	•			
			canceled			

 Redundant communication medium is hard to verify (non-determinism, state space explosion)

Experimental Results: Startup

- Fail-silent node (+ 2 correct nodes, 1 channel, 1 CBG): WCET of 29 cycles
- Fail-silent CBG (+ 1 correct CBG, 2 correct nodes): WCET of 15 cycles
- Resetting (leading) coldstarter (+ 2 correct nodes, 1 channel, 1 CBG): WCET of 41 cycles
- CAS-babbler (+ 2 correct nodes, 1 CBG, 1 channel): unbounded WCET

11/28/2008 Echtzeit 2008 19

Conclusion

- Schematic translation from SDL to Promela is a good way to start
 - However, extensive manual refinement is needed in this case study
- CAS-babbling not always tolerated (not even with a CBG)
- Proper host and cluster configuration essential for timeliness properties
 - A host that switches off the bus driver can enhance fault tolerance
- Models well suited to validate configurations

Thank you.