

Entwicklung eines Singleboardcomputers mit RTOSUH/PEARL für industrielle Anwendungen

Jan Bartels
Siempelkamp Maschinen- und Anlagenbau GmbH

1

Gliederung

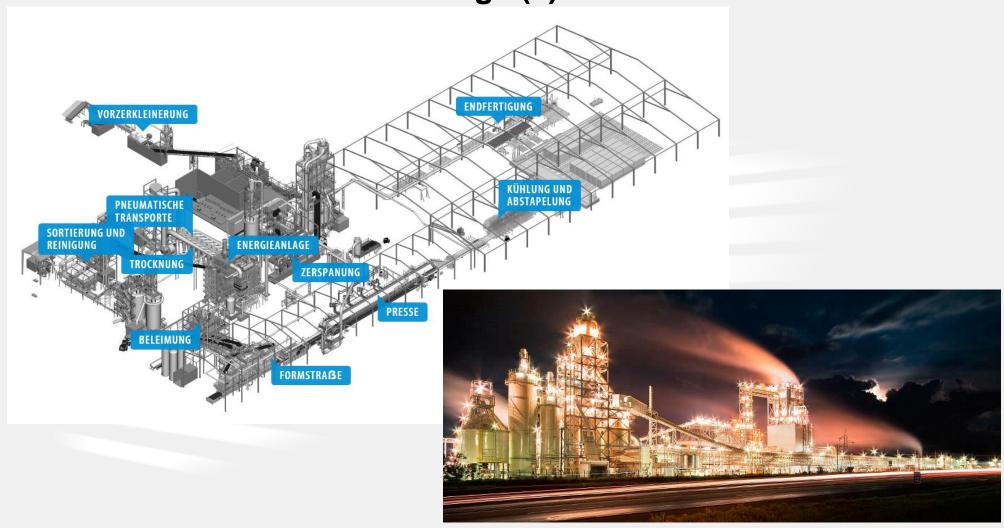
- Einsatz und Historie
- Anforderungen
- Systemstruktur
- Multicore-Betrieb
- Ausblick



Gliederung

- Einsatz und Historie
- Anforderungen
- Systemstruktur
- Multicore-Betrieb
- Ausblick

Übersicht Holzwerkstoffanlage (1)



Übersicht Holzwerkstoffanlage (2)

Übersicht Holzwerkstoffanlage (3)

ContiRoll-Presse:

- Länge zwischen 30-60 m
- Breite zwischen 4 und 10 Fuß
- Geschwindigkeit bis 2000 mm/s
- Plattendicke zwischen 1,5 und 42 mm
- ca. 60-100 hydraulische Achsen

Generation 1: 5 x 68040/68060, VMEbus

- CPU: 5 x Motorola MVME162/172
- 68040, 25 MHz (68060, 32 MHz)
- 8/16 MB RAM
- 1 x Ethernet
- 2 SCSI-Festplatten
- 512 kB statisches RAM, batteriegepuffert
- SVGA-Grafik
- 5 Interbus-Controller G3
- E/A-Module: Interbus ST
- 1994-1997 (MVME162)
- 1997-2004 (MVME172)

Generation 2: 1 x PPC 7457, VMEbus

- CPU: Motorola MVME5500
- 1 x PowerPC 7457, 1 GHz
- 512 MB RAM
- 1 x FastEthernet, 1 x Gigabit Ethernet
- 2 CF-Karten
- 4 MB statisches RAM, batteriegepuffert
- 4-5 Interbus-Controller G4
- E/A-Module: Inline
- seit 2013: PROFINET RT mit Inline
- Interbus mittels PROFINET-Proxy
- 2004-2017

Generation 3: 1 x QorlQ T1022, Singleboard

- CPU: QorlQ T1022/1042
- 1,2 GHz, 2/4 Cores
- 512 MB RAM
- 3 x Gigabit Ethernet
- 2 SATA SSDs
- 512 kB MRAM
- Optional 2 PMC-Steckplätze
- Optional netJACK-Modul
- PROFINET RT
- E/A-Module: Inline, Axioline, ET200SP
- ab 2018

Gliederung

- Einsatz und Historie
- Anforderungen
- Systemstruktur
- Multicore-Betrieb
- Ausblick

Anforderungen (1)

- Weitgehende Softwarekompatibilität zu G2 und G1
 - Weiternutzung bestehender Software
 - Bestehendes Know-How
 - Etablierte Workflows bei Anlagenvorbereitung
 - Geringer Portierungsaufwand bei Modernisierungen
- Lange Verfügbarkeit aller Komponenten (mind. 10 Jahre)

Anforderungen (2)

- Deutliche Steigerung der Rechenleistung
- Deutliche Reduzierung der Hardwarekosten
- Optional erweiterbar durch PMC-Module
- 24-V-Stromversorgung statt Netzspannung wegen Zulassungsverfahren
- Geringer Wartungsaufwand für Hardware
 - Lüfterloses Design
 - Verzicht auf Batteriepufferung

Alternative Lösungsansätze

- Make or Buy?
- Intel Atom statt QorlQ?
- Echtzeitlinux statt RTOS-UH?
- C statt PEARL?
- OpenPEARL unter Linux?
- Investieren in Hardware oder in Software?
- Eigenes Know-How?
- Entwicklungsrisiko?
- Langfristige Verfügbarkeit?

Projektpartner

esd electronics

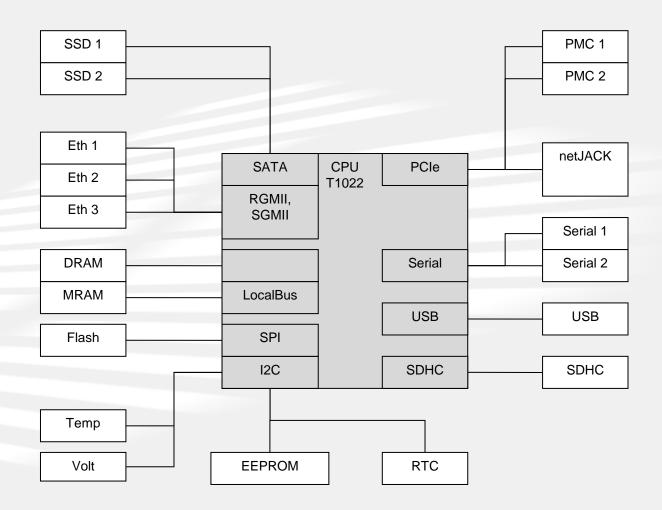
- Entwicklung kundenspezifischer Hardware
- QorlQ-T10-Plattform für verschiedene Projekte und Kunden
- Hardwarefertigung
- Bootloader-Firmware

Ingenieurbüro für Echtzeitprogrammierung

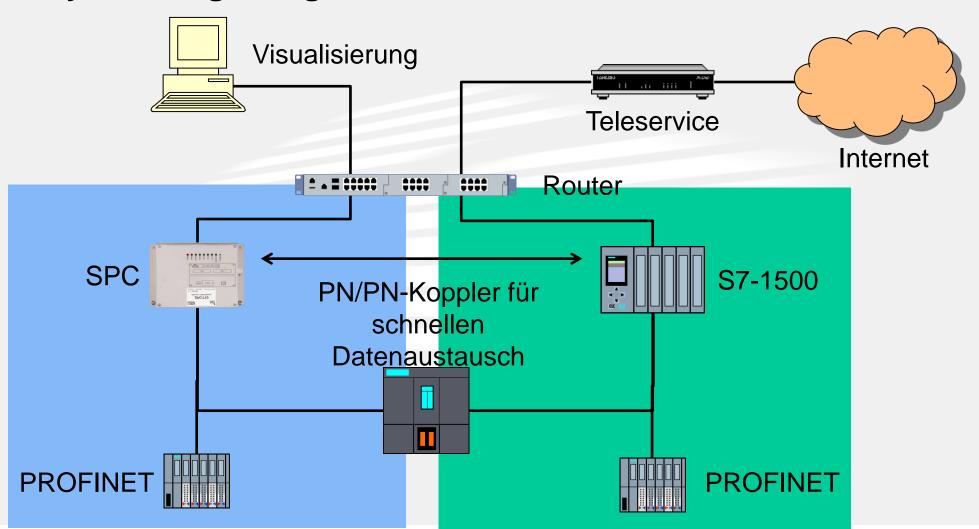
- Anpassung des Echtzeitbetriebssystems RTOS-UH
- Treiber für Onboard-Hardwarekomponenten (CPU, Netzwerk, SATA)
- Erweiterung von RTOS-UH für SMP-Multicore-Betrieb

Gliederung

- Einsatz und Historie
- Anforderungen
- Systemstruktur
- Multicore-Betrieb
- Ausblick


Prozessor

- QorlQ T1022/1042 von NXP
- Dual-Core bzw. Quad-Core
- 64-Bit e5500 PowerPC
- FPU mit IEEE754
- 1,2 GHz Takt
- Speicher
 - DDR3/DDR4 1600 MT/s, ECC
 - 32 kB D- + 32 kB I-Cache pro Core
 - 256 KB L2 Cache pro Core
 - 256 KB gemeinsamer L3-Cache
- Thermische Leistung ca. 7 W
- 780 Pin BGA-Gehäuse
- Umfangreiche Peripherie onchip

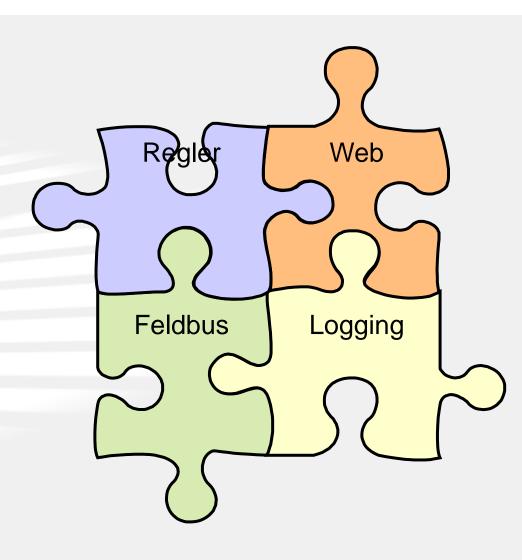


Hardwarestruktur

Systemumgebung

Integrierter SPS-Koppler

- Externe SPS-Koppler werden in SPC integriert
- Hilscher netJACK mit PCI-Express
- Erhebliche Kostenvorteile
- Geringerer Verkabelungsaufwand
- Option f
 ür "exotische" Netzwerkprotokolle



Softwarearchitektur (1)

Umfangreiche Systemsoftware für

- Feldbus
- Netzwerk/Visualisierung
 - Clients/Server
 - verschiedene Protokolle (S7, S5, CIP)
- Logging
- Diagnose
- Datenhandling
 - Konsistenzprüfung
 - Transaktionsprotokolle
 - Wegverfolgung
- Abwärtskompatible
 Schnittstellen bis Generation 1

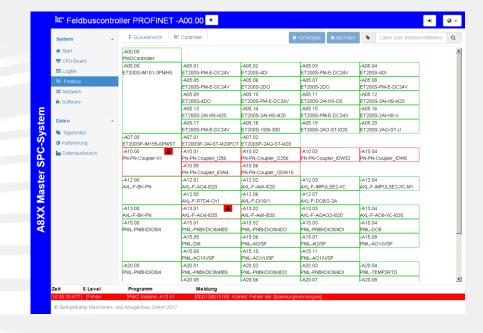
Softwarearchitektur (2)

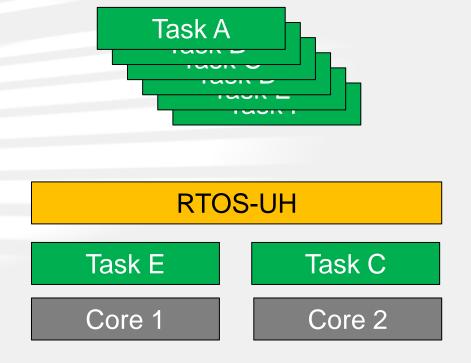
- Konsequente Abstraktion der Hardware
 - Keine direkten Zugriffe von Reglern auf E/As
 - E/A-Vorverarbeitung durch Systemsoftware
 - E/A-Check im Werk ohne Anlagensoftware
- Konfiguration durch ASCII-Tabellen
 - Generierung aus externen Datenquellen (z. B. CAD-Programmen)
 - Einheitliche Datenbasis für viele Zwecke (z. B. Skalierung, Forcen, Kalibrierung, Diagnose, Web, ...)

Weboberfläche

Lauffähig unter allen modernen Browsern

- Darstellung auf PC oder Tablet
- Multipage JavaScript-Applikation
- Nutzung div. Frameworks und Bibliotheken

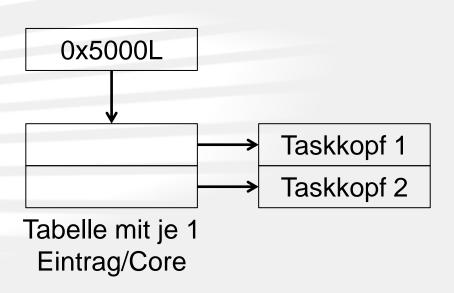



Gliederung

- Einsatz und Historie
- Anforderungen
- Systemstruktur
- Multicore-Betrieb
- Ausblick

Symmetrisches Multiprocessing (SMP)

- Betriebssystem kümmert sich automatisch um die Verteilung der Tasks auf die CPU-Cores
- Interruptbearbeitung nur auf Core 1
- Inter-Core-Kommunikation über MPIC (Multi-Processor Interrupt Controller)
 - Dispatcherstart
 - Cachehandling



Ermitteln des eigenen Task-Identifiers (TID)

Bisher: Zugriff auf Adresse 0x5000L

0x5000L Taskkopf

- Neu: TID-Zelle für jeden Core
- Systemcall notwendig anstelle eines Speicherzugriffs
- Ermitteln, auf welchem Core die eigene Task läuft
- 2. Zugriff auf Tabelle

Entwicklung eines Singleboardcomputers Echtzeit 2017 **26**

Rechenleistung

Taskwechsel: 700461			Zeit: 16-10-2017, 1	2:46:44	Dauer: 00:00:20,072950 s	
Name		ĮΞ			Laufzei	eit (%)
T	re:#E1000 PNIO	Taskwechsel	Laufzeit (s)	Laufzeit (%)	Ф	5
#E100	00	0	1,996981	9,9486		
pnioscan		0	0,707110	3,5227		
pnioscan_parameter		0	0,000097	0,0005		
PNIO_LLDPTask		0	0,000206	0,0010		Generation 2
PNIO_MsgTimerTask		0	0,002662	0,0133		3 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
PNIO_RPCClientTask		0	0,000018	0,0001		
PNIO_RPCServerTask		0	0,000018	0,0001		
PNIO_RTTask		0	2,365834	11,7862		
PNIO_RTTimerTask		0	0,052391	0,2610		
PNIO_	SNMPManagerTask	0	0,000018	0,0001		

- absolute Tasklaufzeiten ca. 20 % kürzer
- relative Tasklaufzeiten ca. halbiert
- deutlicher SMP-Mehraufwand in Einzelfällen

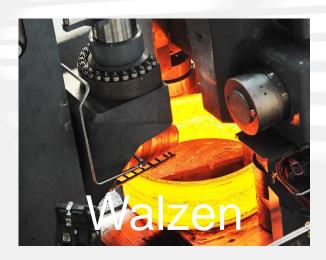
Taskwechsel: 473656/295279		Zeit: 16-10-2017, 1	2:34:23	Dauer: 00:00:40,232996 s	
Name ↓ <u>±</u>	Taskwechsel	Laufzeit (s)	Laufzeit (%)	Laufzeit	(%)
▼ re:#T\$EC2 PNIO				⊕	5
#TSEC2	230117	2,166293	5,3844		
pnioscan	20334	0,602098	1,4965		
pnioscan_parameter	21	0,000110	0,0003		
PNIO_LLDPTask	24	0,000295	0,0007		_
PNIO_MsgTimerTask	642	0,003648	0,0091		Generation 3
PNIO_RPCClientTask	2	0,000012	0,0000		Contoration
PNIO_RPCServerTask	2	0,000011	0,000,0		
PNIO_RTTask	127102	3,030591	7,5326		
PNIO_RTTimerTask	20117	0,075038	0,1865		
PNIO SNMPManagerTask	2	0,000010	0,000		

Gliederung

- Einsatz und Historie
- Anforderungen
- Systemstruktur
- Multicore-Betrieb
- Ausblick

Ausblick: neue ContiRoll-Presse

Neue ContiRoll-Presse:


- Geschwindigkeit bis 3000 mm/s
- ca. 170-300 hydraulische Achsen
- Umstieg von PROFINET auf EtherCAT
- (Zurück-)Verlagerung von Regelungsaufgaben von SPS auf SPC-System

Ausblick: Neue Einsatzbereiche

Ausblick: Condition Monitoring

Lebensdauer- und Verschleißüberwachung aller Maschinenund Anlagenteile

- Lebensdauer- und Verschleißüberwachung aller Maschinen- und Anlagenteile
- Datenerfassung und –auswertung unterschiedlicher Sensoren und Datenquellen
- Archivierung von Daten
- Alarmierung per EMail und SMS

Fragen

