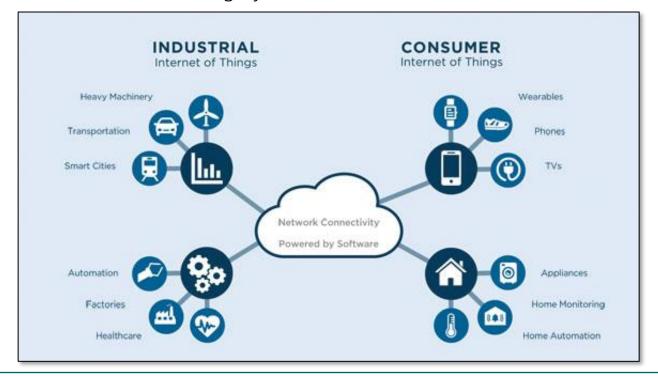


Sichere Mobilfunkkommunikation für ein Fahrzeugleitsystem

- Christoph Maget -Workshop Echtzeit 2020 20.11.2020

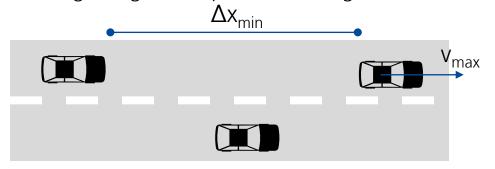
Inhalt

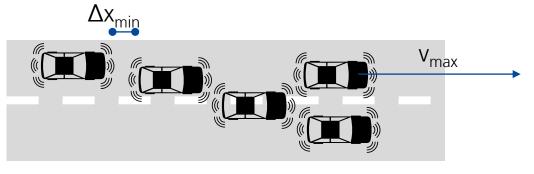

- 1. Hintergrund: Internet der Dinge und Fahrzeugleitsysteme
- 2. Stand der Technik mit Bewertung relevanter Gesichtspunkte
- 3. Vorstellung "Sichere Kommunikationsarchitektur für Fahrzeugleitsysteme (SIKAF)"
- 4. Implementierung und Evaluation SIKAF
- 5. Zusammenfassung und Ausblick

Folie 2 20.11.2020 Christoph Maget – Echtzeit 2020

Hintergrund

- Automatisierungssysteme können Aufgaben schneller und präziser ausführen als der Mensch
- Koordination von Automatisierungssystemen erfordert Kommunikation: "Internet of Things (IoT)"


Folie 3 20.11.2020 Christoph Maget – Echtzeit 2020



Anwendung: Verkehrssysteme

Abstände und Geschwindigkeiten können optimiert werden

Steigerung der Kapazität ist möglich ohne (kostenintensiven) Aus- und Neubau

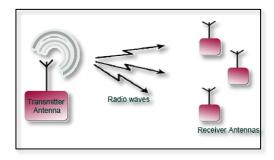
Manuelle Fahrzeuglenkung

Automatische Fahrzeuglenkung

Voraussetzungen:

- Autonome Fahrzeuglenkung gem. "SAE-Levels" (6 Stufen nach SAE J3016)
- Fahrzeugleitsystem ("Intelligentes Verkehrssystem", IVS) zur Koordinierung
- Sicherer und rechtzeitiger Nachrichtenaustausch

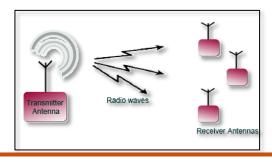
Eingrenzen der Forschungsfrage


Sensing

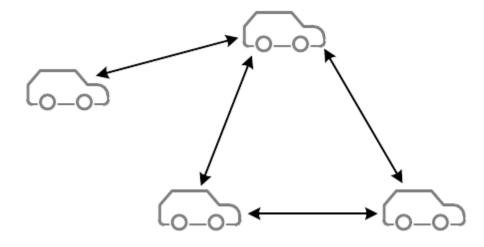
Reasoning

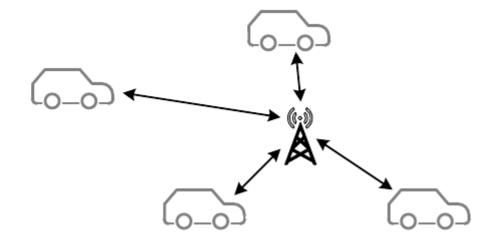
Acting

Eingrenzen der Forschungsfrage


Sensing

Reasoning

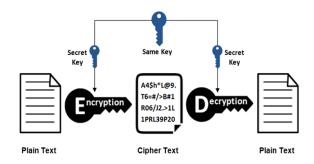

Acting



Stand der Technik: Topologie

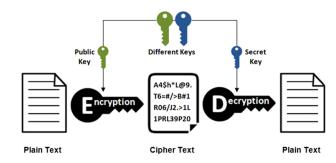
Ad-hoc Modus (Vehicular Ad-hoc Network, VANet)

- + Keine zusätzliche Infrastruktur notwendig
- Datenweiterleitung teilweise fremdbestimmt


Infrastrukturmodus

- + Übertragungsparameter kontrollierbar
- Zusätzliche Infrastruktur notwendig

Stand der Technik: Kryptologie


Symmetrische Kryptografie:

Gleicher Schlüssel zur Ver- und Entschlüsselung

- + Schnell
- + Perfekte Sicherheit möglich
- Schlüsselverteilung aufwändig

Asymmetrische Kryptografie:

Verschiedene Schlüssel zur Ver- und Entschlüsselung

- Rechenaufwand
- Privater Schlüssel berechenbar
- + Gut skalierbar

Stand der Technik: Sicherheit verbreiteter Verschlüsselungsverfahren

- Blockchiffre "Data Encryption Standard (DES)"
 - Schlüssellänge: 56 bit
 - Brechen laut Hochrechnungen in Sekunden möglich (*Electronic Frontier Foundation: Cracking DES:* Secrets of Encryption Research, Wiretap Politics and Chip Design. O'Reilly, 1998)
- Stromchiffre "Ron's Code 4 (RC4)"
 - Verbreitet im WI AN-Bereich als WFP
 - Brechen in wenigen Sekunden möglich (Fluhrer, S. et.al.: Weaknesses in the Key Scheduling Algorithm of RC4, SAC, 2001)
- Blockchiffre "Advanced Encryption Standard (AES)"
 - Schlüssellänge: maximal 256 bit
 - Aktuell sicher (laut NIST), ggf. "gleiches Schicksal" wie DES

Beispiele für Fahrzeughacks

Folie 10 20.11.2020 Christoph Maget – Echtzeit 2020

Stand der Technik: Perfekte Sicherheit

Definition:

Ein Verschlüsselungsverfahren ist perfekt sicher, wenn für alle Klartexte $p \in P$ und für alle Schlüsseltexte $c \in C$ gilt:

$$Pr(p|c) = Pr(p)$$

Folge

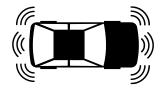
Schlüssel von Nachrichtenlänge notwendig

Eigenschaften

Immun gegen Angriffe mit beliebiger Rechenleistung, "Secure by Design"
 Implementierung

One Time Pad

Stand der Technik: Informationsaustausch


Fahrzeugbezogen (GPS verortet, bidirektional)

Cooperative Awareness Message (CAM)

- ETSI EN 302 637-2
- Zeitgesteuert

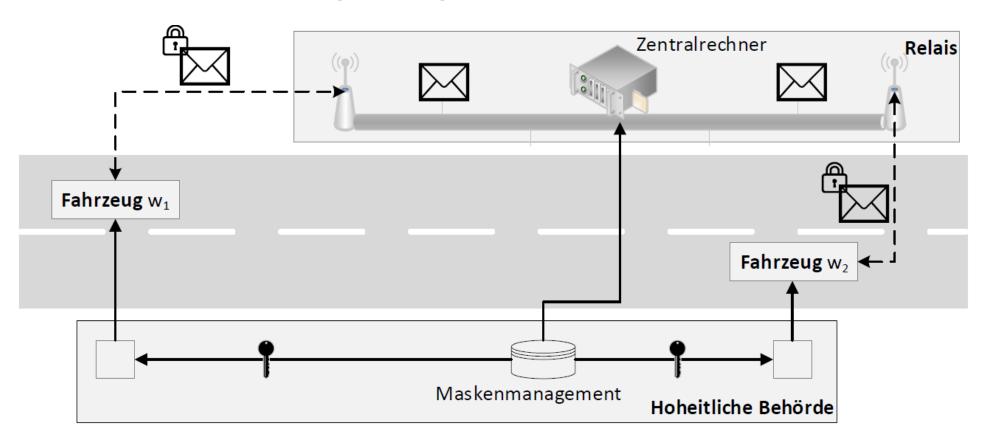
Decentralized Environmental Notification Message (DENM)

- FTSLFN 302 637-3
- Ereignisgesteuert
- > Forschungscharakter

Streckenbezogen (abschnittsverortet, unidirektional)

Radio Data System - Traffic Message Channel (RDS-TMC)

- Positionscodes
- Tabellierte Inhalte


Quelle: Polizei, Verkehrsmeldestellen

Keine Authentifizierung

Technischer Aufbau der vorgeschlagenen Kommunikationsarchitektur

Folie 13 20.11.2020 Christoph Maget – Echtzeit 2020

Fahrzeugbezogen

Aktueller und beabsichtigter Fahrzeugzustand

Nachrichteninhalt	Datenmenge gesamt	codiert	davon maskierbar
Nachrichtenspezifikationen	152 bit	127 bit	64 bit
Attribute	7 bit	7 bit	6 bit
Trajektorie	$224\mathrm{bit}$	$33\mathrm{bit}$	$223\mathrm{bit}$
Kraftstoff	$12\mathrm{bit}$	5 bit	11 bit
Freitext	$142\mathrm{bit}$	2 bit	$140\mathrm{bit}$
Prüfsumme	20 bit	0 bit	20 bit
Maskenanzeiger	80 bit	$0 \mathrm{bit}$	0 bit
Summe	637 bit	$174\mathrm{bit}$	$464\mathrm{bit}$

Streckenbezogen

Aktueller und prognostizierter Streckenzustand

Nachrichteninhalt	Datenmenge		davon
Nachrichtennman	gesamt	$\operatorname{codiert}$	maskierbar
Nachrichtenspezifikationen	119 bit	94 bit	32 bit
Verortung	$172\mathrm{bit}$	$33\mathrm{bit}$	$0 \mathrm{bit}$
Fahrbahnoberfläche	$5\mathrm{bit}$	5 bit	0 bit
Sichtweite	9 bit	1 bit	0 bit
Geschwindigkeitsbegrenzung	11 bit	$3 \mathrm{bit}$	0 bit
Hindernis	6 bit	6 bit	$0 \mathrm{bit}$
Alternativstrecke	$34\mathrm{bit}$	$34\mathrm{bit}$	32 bit
Parkplätze	18 bit	$2 \mathrm{bit}$	16 bit
Freitext	$142\mathrm{bit}$	$2 \mathrm{bit}$	$140\mathrm{bit}$
Inhaltsverifizierung	10 bit	$2 \mathrm{bit}$	0 bit
Prüfsumme	20 bit	0 bit	20 bit
Maskenanzeiger	80 bit	0 bit	0 bit
Summe	626 bit	182 bit	$240\mathrm{bit}$

Code	Wert	Größe
$0 \dots 1023$	Versionsnummer SIKAF	$10\mathrm{bit}$
$\{0,1\}$	{strecken, fahrzeug}bezogen	1 bit
{0x00000,,0xfffff}	IRIG-Zeitstempel	$60\mathrm{bit}$
$\{0,1\}$	Sender maskiert {nein, ja}	1 bit
$\{0x000000000, \dots, 0xfffffffff\}$	dID Sender	$32\mathrm{bit}$
$\{0,1\}$	Empfänger maskiert {nein, ja}	1 bit
$\{0x00000000, \dots, 0xffffffff\}$	dID Empfänger	$32\mathrm{bit}$
$1 \dots 2048$	Gültigkeit in Millisekunden (ms)	$11\mathrm{bit}$
$0\dots 15$	Meldungen pro Sekunde (s^{-1})	$4\mathrm{bit}$

Streckenbezogen

Aktueller und prognostizierter Streckenzustand

Nachrichteninhalt	Datenmenge gesamt	codiert	davon maskierbar
Nachrichtenspezifikationen	119 bit	94 bit	32 bit
Verortung	$172\mathrm{bit}$	$33\mathrm{bit}$	$0\mathrm{bit}$
Fahrbahnoberfläche	5 bit	5 bit	$0\mathrm{bit}$
Sichtweite	9 bit	1 bit	$0\mathrm{bit}$
Geschwindigkeitsbegrenzung	11 bit	3 bit	$0\mathrm{bit}$
Hindernis	6 bit	6 bit	$0\mathrm{bit}$
Alternativstrecke	34 bit	$34\mathrm{bit}$	$32\mathrm{bit}$
Parkplätze	18 bit	2 bit	16 bit
Freitext	$142\mathrm{bit}$	2 bit	$140\mathrm{bit}$
Inhaltsverifizierung	10 bit	2 bit	$0\mathrm{bit}$
Prüfsumme	20 bit	0 bit	20 bit
Maskenanzeiger	80 bit	0 bit	$0 \mathrm{bit}$
Summe	626 bit	$182\mathrm{bit}$	240 bit

Streckenbezogen

Aktueller und prognostizierter Streckenzustand

Nachrichteninhalt	Datenmenge gesamt	codiert	davon maskierbar
Nachrichtenspezifikationen	119 bit	94 bit	32 bit
Verortung	$172\mathrm{bit}$	$33\mathrm{bit}$	0 bit
Fahrbahnoberfläche	5 bit	5 bit	0 bit
Sichtweite	9 bit	1 bit	0 bit
Geschwindigkeitsbegrenzung	11 bit	3 bit	0 bit
Hindernis	6 bit	6 bit	0 bit
Alternativstrecke	34 bit	$34\mathrm{bit}$	32 bit
Parkplätze	18 bit	$2 \mathrm{bit}$	16 bit
Freitext	$142\mathrm{bit}$	$2 \mathrm{bit}$	$140\mathrm{bit}$
Inhaltsverifizierung	10 bit	$2 \mathrm{bit}$	0 bit
Prüfsumme	20 bit	0 bit	20 bit
Maskenanzeiger	80 bit	$0 \mathrm{bit}$	0 bit
Summe	626 bit	182 bit	$240\mathrm{bit}$

Code	Wert	Größe
$\{0,1\}$	$gemeldet \{nein, ja\}$	1 bit
$0 \\ 1 \dots 255$	Sichtweite maximal Sichtweite $(\times 10 \mathrm{m})$	8 bit

Fahrzeugbezogen

Aktueller und beabsichtigter Fahrzeugzustand

Nachrichteninhalt	Datenmenge gesamt	codiert	davon maskierbar
Nachrichtenspezifikationen	152 bit	127 bit	64 bit
Attribute	7 bit	7 bit	6 bit
Trajektorie	$224 \mathrm{bit}$	$33\mathrm{bit}$	$223\mathrm{bit}$
Kraftstoff	$12\mathrm{bit}$	5 bit	11 bit
Freitext	$142\mathrm{bit}$	2 bit	$140\mathrm{bit}$
Prüfsumme	20 bit	0 bit	20 bit
Maskenanzeiger	80 bit	$0 \mathrm{bit}$	0 bit
Summe	637 bit	$174\mathrm{bit}$	$464\mathrm{bit}$

Code	Wert	Größe
{0,1}	maskiert {nein, ja}	1 bit
03599999999	Länge (°)*	32 bit
$0 \dots 3599999999$	Breite (°)*	$32\mathrm{bit}$
$0\dots65535$	Höhe (m)	$16\mathrm{bit}$
{0x00000000,,0xffffffff}}	{,,A1", ,,A99",, ,,Zusestrasse"}	32 bit
01023	Abschnitt	$10\mathrm{bit}$
$0 \dots 1023$	Station	$10\mathrm{bit}$
0100	Position in Prozent (%)*	7 bit
$1 \dots 16$	Fahrspur	4 bit
$0\dots 255$	Geschwindigkeit aktuell $(\frac{km}{h})$	8 bit
$0\dots 255$	Geschwindigkeit in $0.5 \mathrm{s} \left(\frac{\mathrm{km}}{\mathrm{h}}\right)$	8 bit
$0\dots 255$	Geschwindigkeit in $1.0 \mathrm{s} \left(\frac{\mathrm{km}}{\mathrm{h}}\right)$	8 bit
$0 \dots 255$	Geschwindigkeit in $1.5 \mathrm{s} \left(\frac{\mathrm{km}}{\mathrm{h}}\right)$	8 bit
$0 \dots 3599$	Richtung aktuell (°)*	12 bit
$0 \dots 3599$	Richtung in $0.5 \mathrm{s}$ (°)*	$12\mathrm{bit}$
03599	Richtung in $1.0 \mathrm{s}$ (°)*	$12\mathrm{bit}$
$0 \dots 3599$	Richtung in $1.5 \mathrm{s}$ (°)*	$12\mathrm{bit}$
*Codes nicht ausgeschöpft		

Folie 17 20.11.2020 Christoph Maget – Echtzeit 2020

Fahrzeugbezogen

Aktueller und beabsichtigter Fahrzeugzustand

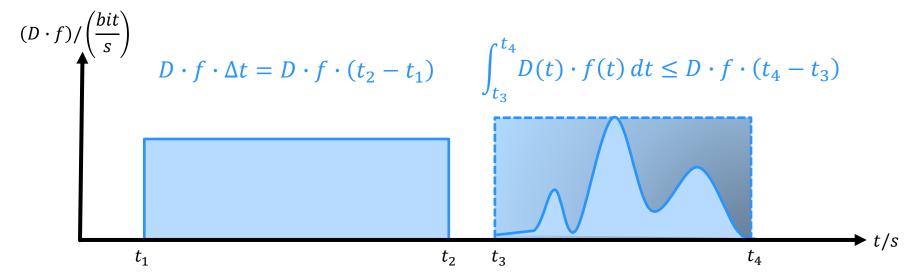
Nachrichteninhalt	Datenmenge gesamt	codiert	davon maskierbar
Nachrichtenspezifikationen	$152\mathrm{bit}$	$127\mathrm{bit}$	64 bit
Attribute	7 bit	7 bit	6 bit
Trajektorie	$224\mathrm{bit}$	$33\mathrm{bit}$	$223\mathrm{bit}$
Kraftstoff	$12\mathrm{bit}$	5 bit	11 bit
Freitext	$142\mathrm{bit}$	$2 \mathrm{bit}$	$140\mathrm{bit}$
Prüfsumme	20 bit	0 bit	20 bit
Maskenanzeiger	80 bit	0 bit	0 bit
Summe	$637\mathrm{bit}$	$174\mathrm{bit}$	464 bit

Code	Wert	Größe
$0 \dots 1048575$	Prüfsumme	$20\mathrm{bit}$
0x000000000,,0xfffffffff	Maskenanzeiger von	$40\mathrm{bit}$
0x000000000,,0xffffffffff	Maskenanzeiger bis	40 bit

Folie 18 20.11.2020 Christoph Maget – Echtzeit 2020

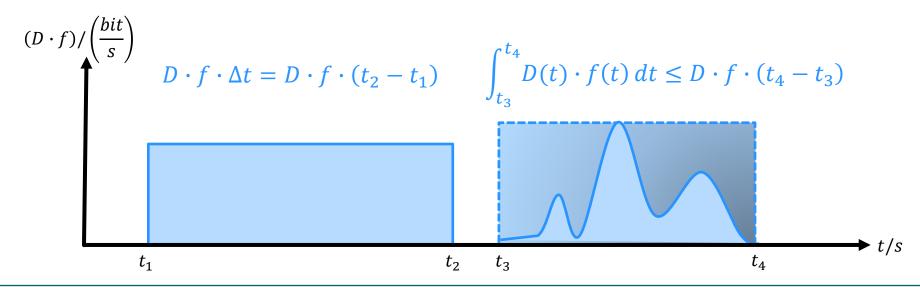
- Datenmenge des zu maskierenden Nachrichtenteils: D = D(t)
- Sendefrequenz maskierter Nachrichten: $f_{send} = f_{send}(t)$
- Empfangsfrequenz maskierter Nachrichten: $f_{empf} = f_{empf}(t)$
- Aktivitätsdauer: $t_A = \sum t'_A$

Folie 19 20.11.2020 Christoph Maget – Echtzeit 2020


- Datenmenge des zu maskierenden Nachrichtenteils: D = D(t)
- Sendefrequenz maskierter Nachrichten: $f_{send} = f_{send}(t)$
- Empfangsfrequenz maskierter Nachrichten: $f_{empf} = f_{empf}(t)$
- Aktivitätsdauer: $t_A = \sum t'_A$

Folie 20 20.11.2020 Christoph Maget – Echtzeit 2020

- Datenmenge des zu maskierenden Nachrichtenteils: D = D(t)
- Sendefrequenz maskierter Nachrichten: $f_{send} = f_{send}(t)$
- Empfangsfrequenz maskierter Nachrichten: $f_{empf} = f_{empf}(t)$
- Aktivitätsdauer: $t_A = \sum t'_A$



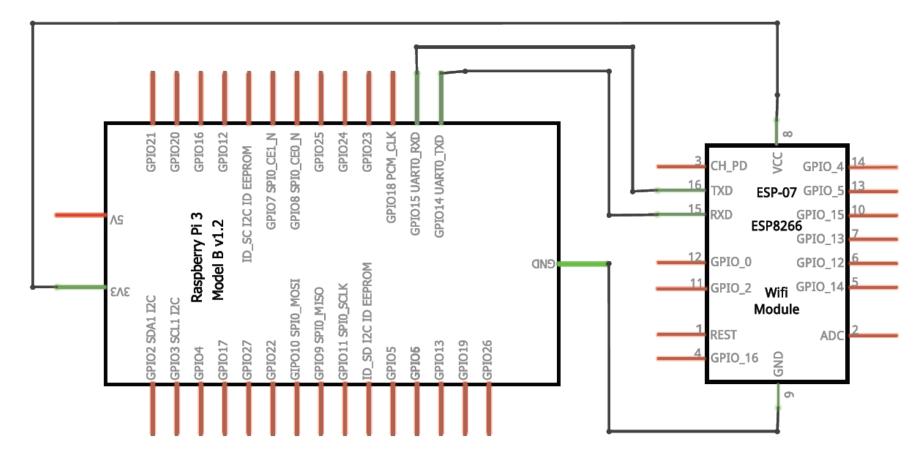
Benötigte Schlüsselgröße

$$G \ge \sum_{t_{A}^{\prime}} \int_{t_{A}^{\prime}} \left[\left(f_{send_{b}}\left(t\right) + f_{empf_{b}}\left(t\right) \right) \cdot D_{b}\left(t\right) + \left(f_{send_{w}}\left(t\right) + f_{empf_{w}}\left(t\right) \right) \cdot D_{w}\left(t\right) \right] dt$$

w: Fahrzeugbezogen; b: Streckenbezogen

Szenarienbetrachtung

Szenario	Mindestgröße	Automatisch	Vollautonom
D_b	20 bit	626 bit	626 bit
D_{w}	20 bit	637 bit	637 bit
f_{send_b}	1 Hz	10 Hz	10 Hz
f_{send_w}	1 Hz	10 Hz	10 Hz
f_{empf_b}	1 Hz	10 Hz	10 Hz
f_{empf_w}	1 Hz	10 Hz	10 Hz
t_A^*	105 h	105 h	7.300 h
Summe	3,60 MiB / a	1,11 GiB / a	77,28 GiB / a


Folie 23 20.11.2020 Christoph Maget – Echtzeit 2020

^{*)} Aktivitätsdauer = Fahrleistung / Geschwindigkeit

Prototyp

Beispiel Relais

Folie 24 20.11.2020 Christoph Maget – Echtzeit 2020

Zusammenfassung

Feststellung: Bestehende Konzepte zur Fahrzeugvernetzung sind nicht sicher oder nicht echtzeitfähig

Mit SIKAF wurde eine Kommunikationsarchitektur vorgestellt, die

- perfekt sichere Verschlüsselung nutzt,
- echtzeitfähige Datenübertragung ermöglicht und
- den Schlüsselnachschub organisatorisch löst.

Insgesamt wurde damit gezeigt, dass sich perfekt sichere Verschlüsselung im Internet der Dinge einsetzen lässt.

Folie 25 20.11.2020 Christoph Maget – Echtzeit 2020

Ausblick

- Weiterentwicklung der Software hinsichtlich
 - Evaluierung Verschlüsselungsverfahren: https://github.com/ChrisMg1/CryptEval
 - Software Prototyp: https://github.com/ChrisMg1/Prototyp-SIKAF
- Weitere Auswertung und Optimierung des Zeitverhaltens
 - Anpassen der Nachrichtenstruktur
 - Auswahl des Übertragungsprotokolls
- Blockchain als dezentrale Datenbank zur Speicherung eines "Vertrauens"parameters

 Folie
 26
 20.11.2020
 Christoph Maget – Echtzeit 2020

Diskussionspunkte

Ist eine hoheitliche Behörde eine adäquate Institution zur Schlüsselerzeugung und -verwaltung?

Ja – denn

- der Trend im Internet (of Things) geht ohnehin zu zentralen Plattformen (Amazon, Google, SWIFT)
- eine demokratisch legitimierte Institution ist vertrauenswürdig(er) und mindert Interessenkonflikte

Ist der Aufwand perfekt sicherer Verschlüsselung (OTP) notwendig und angemessen?

Ja – denn

- die Entwicklung der Rechnertechnik (vgl. mooresches Gesetz) senkt Zeitbedarf für Angriffe (Quantencomputer)
- perfekte Sicherheit macht keinen Ersatz des Verschlüsselungsalgorithmus notwendig ("Secure by Design")
- Erfüllt (stillschweigend) angenommene Voraussetzung vieler Protokolltests ("Verschlüsselung ist sicher")

Danke für die Aufmerksamkeit

christoph.maget@studium.fernuni-hagen.de

Bildquellen

The Noun project (Dalpat Prajapati, Adrien Coquet, Thak Ka)

Internet (heise.de, adac.de, auto-motor-und-sport.de, de.wikipedia.org)

www.jkoolcloud.com

www.slideshare.net

cryptobook.nakov.com

Yeping Chu, Lin Pan, Kaijun Leng: International Journal of Advanced Manufacturing Technology

Folie 29 20.11.2020 Christoph Maget – Echtzeit 2020